Qwen3.5实测!来看贺岁档大模型的实力!
贺岁档大模型来啦! Qwen3.5 这次支持了文本、图片、视频多模态输入, 本次准备了全新的后端能力测试! 以及照例带来前端能力、Agent、长上下文能力的全面测试!
来看本次新增的后端编程测试 vector DB Bench: 要求大模型从零实现一个高性能向量数据库, 只给提示词不给实现方案, 配合 coding agent 自动写代码、编译、跑分. 结果 Qwen3.5 直接甩出王炸 —— QPS 1405, 是 Kimi-K2.5 的 4.8 倍, GLM-5 的 25 倍! 关键在于它不仅用了 IVF 倒排索引 + AVX512F 指令集, 还在有限轮次内自主探索出了最优聚类参数 (K=2048, nprobe=30), 每次查询只需扫描约 15000 条数据, 而 Kimi-K2.5 的参数配比要扫描 75000 条, 正好解释了近 5 倍的性能差距. 这波调参堪称神之一手.
前端编程也有进步: 大象牙膏测试终于能正确建模三角烧瓶, 鞭炮连锁爆炸的粒子光影效果不错, 支持多模态后甚至可以对着网站录屏直接克隆. 但空间理解仍是短板, 陀飞轮机芯测试中齿轮设计暴露了差距.
指令遵循: 洛希极限测试中的指令遵循达到 85.9% (Gemini-3.0-Pro 为 90.6%), 主要扣分在未遵循加速曲线公式. Agent 能力: 硅基骑手测试得分 668.43, 仅次于 GLM-5 的 738.69, 也侧面解释了为什么后端编程 Agent 表现这么强.
长文本召回: 256K 上下文召回 99.1%, 但不给原文时四选一蒙对率高达 75.6%, 结果完全不置信.
总结: Qwen3.5 最亮眼的是后端编程能力, 同样的 IVF 算法靠调参拉开 5 倍差距, Agent 能力同样在线. 不过本次测试还发现了点小问题, 输出偶尔不太稳定, 会漏掉 markdown 语法或把答案输出到 thinking 标签里, 这点要注意, 目前我已经反馈给官方了.
这份新年礼物, 大家觉得怎么样?
#HOW I AI##Qwen##千问大模型##Qwen3.5##阿里千问##通义实验室# http://t.cn/AXtjSgVh
发布于 北京
